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The flow round an elliptic cylinder immersed in a finite volume of fluid and 
influenced by an electric field is determined, under the boundary conditions 
arising from electrosmosis at the surface of the cylinder. This is a problem in 
slow viscous flow with difficult boundary conditions, and is solved by numerical 
analysis, using the relaxation method. After the flow pattern has been deter- 
mined, the mechanical action on the cylinder is calculated. An experimental 
application based on the theoretical results is suggested as a method for the 
determination of electrokinetic potentials. 

1. Introduction 
We consider an elliptic cylinder immersed with its generators vertical in a tank 

of horizontal square cross-section. The vertical walls of the tank are electrically 
conducting and are insulated from each other. The cylinder and fluid are either 
both conducting or both non-conducting, and we suppose that an electric field 
is applied between two opposite walls of the tank. Clearly, far from the top and 
bottom of the system we have, approximately, a two-dimensional electrostatic 
or steady-current problem in which, provided the cross-section of the tank is 
large compared with that of the cylinder, we may consider that the cylinder is 
acted upon by a uniform field. We assume that the major axis of the elliptic 
cross-section is set at 45' to the walls of the tank and therefore to the direction 
of the applied field. The arrangement is illustrated in figure 1. 

At the surface between the cylinder and fluid there exists a potential difference 
(phase-boundary potential) due to the presence of an electric double layer. 
A field acting upon the part of the double layer in the fluid produces the pheno- 
menon of electrosmosis, and this in turn causes a general fluid motion in the tank. 
To determine the electrosmotic velocity, we have to know the part of the phase- 
boundary potential that is in the fluid (the electrokinetic potential), and the 
electric field strength acting upon the corresponding part of the double layer. We 
make the usual assumption that for a given pair of materials, the phase-boundary 
potential, and the above-mentioned part of it, are constants, and the field 
strength is obtained from the solution of the electrical boundary-value problem. 
In  fact, as again is usual, we shall regard the double layer as very thin compared 
with the dimensions of the system, and we take the field at the solid boundary, 
on the side of the fluid. The reason for having all the vertical walls of the tank 
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conducting is so that electrosmosis should not occur there but only at the cylinder, 
as will be explained in due course. 

We shall calculate the fluid motion taking the electrosmotic velocity as a 
boundary condition at the cylinder, and treating the problem as one of quasi- 
steady viscous flow. The system is investigated in a region far from the top and 
bottom, where it can be regarded hydrodynamically, as it is electrically, as two- 
dimensional. The fluid motion is obtained, from the Stokes equations-in terms of 
the stream function, which is found by numerical analysis. The stresses at the 
surface of the elliptic cylinder are then calculated, and hence the mechanical 
action on the body, of hydrodynamical origin, determined. 

L 

FIGURE 1. Cross-section of the system. 

There is also a purely electrical mechanical action, but we assume that this 
can be calculated without considering the hydrodynamical problem. 

Specific values have to be given to the dimensions of the system in order to 
apply the numerical method (this is one reason why the cylinder is set specifically 
at 45') although, in fact, the results hold for all geometrically similar systems. 
The ratio of the dielectric constants (or the conductivities) of the cylinder and 
fluid must also be specified, but the calculation is done for three values of this ratio 
and graphs drawn so that our final results are in fact obtained as functions of the 
ratio. 

We treat the electrical problem analytically, assuming that the field is the 
superposition of a part due to the cylinder and a perfectly uniform part corre- 
sponding to fixed sources at infinity. These conditions are very different from 
what we actually have and which are closely associated with what we use in the 
hydrodynamical problem. One might well ask whether the actual conditions are 
a good enough approximation to those assumed in the electrical problem, and if 
so, why one could not similarly assume hydrodynamically that the fluid extends 
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to infinity, so that this part of the problem might also be tractable analytically. 
The answer to the first part of the question is that, in electrostatics, it  is well 
known that a pair of parallel plates whose dimensions and separation are not so 
much greater than other dimensions of the system, gives a remarkably good 
approximation to the theoretical ideal, much better than one would be entitled 
to expect intuitively. Exact studies of edge-effects of condensors (e.g. Jeans 
1943) show that a field becomes effectively uniform at quite a'short distance 
inside the space between the plates, and a problem treated by King (1955), 
electrostatically very similar to ours except that the plates are infinite, shows 
strikingly that a body in the space between can be quite large in relation to the 
separation. King finds an error of less than 0.2 yo through making a similar 
assumption to ours in a system with similar relative dimensions. Nevertheless, 
one might still reasonably propose that we could have treated the problem 
numerically, in the same way as the hydrodynamical problem, using the actual 
boundary conditions. However, there seems a considerable likelihood that the 
numerical procedure would have to be very highly refined to ensure that the 
error was no greater than we have through the approximation in the analytical 
method. 

As regards the second part of the question, the problem of the electrosmotic 
flow round a fixed sphere in an infinite fluid was solved analytically by Khan 
(1958), who found that the velocity tends to a uniform non-zero value at infinity. 
We would expect the same behaviour in the solution of the corresponding problem 
of an elliptic cylinder. Now for afinite system, which is the only practicable kind, 
the velocity must become zero at the outer boundary of the system, and thus the 
solution here, illustrated in figure 3, representing two vortices in the fluid between 
the two boundaries, is of a kind we would expect. The point is this: the com- 
parison between the finite and infinite problems is qualitatively different in the 
hydrodynamical case from what it is in the electrical case, Considering the plates 
which give the applied field, the field is roughly the same there in the infinite case 
with the plates absent. On the other hand, in the hydrodynamical case, the 
velocity field is quite different near the outer boundary from what it is if we 
remove the boundary and let the fluid extend to infinity. This situation, and the 
fact that the infinite problem is impracticable, is the justification of our problem. 
Of course, it  is quite possible that the velocity field near the boundary of the 
ellipse is not very different in one case from the other, but in the absence of any 
analytical solutions of finite problems of this type, this is something that we 
cannot assume, and it may well be that the flow pattern is generally quite 
different. 

2. The electrical problem 
We define elliptic co-ordinates (t, 7) by 
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Laplace’s equation in the two-dimensional system for a function V can be easily 
transformed to these co-ordinates and becomes 

The general solution of equation (2) is 

W 

Y = (a, cosh n< + b, sinh nt) (c, cos nr + d, sin ny). (3) 
n = O  

Given a uniform applied field of strength E, in the z-direction, we attempt to 
solve the steady electrical problem which is electrostatic if the cylinder and fluid 
are both insulators and steady-current if they are both conductors. We use 6 to 
denote the ratio of the dielectric constant inside to that outside in the electro- 
static case and the corresponding ratio of the conductivities in the steady- 
current case. We assume that all dielectric constants and conductivities are 
constant, so that the potential satisfies equation (2). 

= A, 
a constant. When the field E, is applied such that its direction makes an anti- 
clockwise angle y with the positive x-direction (the x-axis coinciding with the 
major axis of the elliptic section), we assume, according to (3), for the potential 

We consider the cross-section of the elliptic cylinder to be given by 

outside, V = A + { (B - E,  cosy) coshg-Bsinh c } c  cosr 

+ {(C - E,  sin y) sinh 6 - C cosh c} c sin 7, ( 4 )  

( 5 )  

B’ and C’ being constants and being equal to the x- and y-components, respec- 
tively, of a certain uniform field. 

The boundary conditions are 

A ,  B and C being constants, and for the potential inside, 

V’ = - cB‘ cosh 6 cos 7 - cC’ sinh ( sin y, 

V = V ’ + a  (4  = A ) ,  (6) 

where SZ is the phase-boundary potential which, according to what has been said 
before, we assume to be constant with respect to 7. The values of the constants 
in ( 4 )  and ( 5 )  are determined with the use of (6) and (7). 

Suppose that the fluid has a dielectric constant K and coefficient of viscosity p, 
and that the electrokinetic potential at the elliptic boundary is 5. Then we 
assume Smoluchowski’s formula for the electrosmotic velocity, 

vt = 5 K E t / 4 ~ p  (8) 

(e.g. Adam 1941), where z), and E, are the tangential components of velocity and 
electric intensity, respectively, at  the boundary. We appreciate, of course, that 
vt is actually a velocity at the fluid side of the double layer; however, E, can be 
regarded as exactly at the boundary since with the assumption that the double 
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layer is very thin, it does not vary appreciably through the thickness of the 
double layer. We have 

where s is arc-length around the perimeter of the elliptic cross-section, being 
measured anticlockwise, corresponding to the direction of 7 increasing (see 
figure 1). Using the above solution (preferably V‘, being simpler) and properties 
of the elliptic co-ordinates, it follows that 

(cosh2 h Eo - cos2 T)* (Iftanhh 6 + tanh 

Ef = - d V / d s  = -dV’/da, (9) 

sinh h sin y cos 7 Et = 

- + coth coshh cos y sin?). (10) 
E + coth h 

We keep in mind our assumption that 6 is a constant with respect to 7, being, 
like Q, a characteristic of the two materials in contact. 

At this point it is convenient to consider the mechanical action due purely to 
the electric field E,. This is found by applying to the surface of the cylinder the 
Maxwell stress tensor, which, in Cartesian tensor notation, is 

K KE2 
4n 87r 

T,, = - E, E, - - S,, (E2 = E,E,, p, etc. = 1,2,3).  

Substituting from the above solution, it is elementary, but tedious, to show that 
the cylinder experiences a couple per unit length of 

1 KE: c2( E - 1)2 sin 2y G = -  
8 (e+cothh) (a+tanhh)’ 

and no total force. 

3. The hydrodynamical problem 
We choose new 2- and y-axes, so that the walls of the tank are parallel to one 

or other of these axes (see figurs 1). 
We assume that the fluid is incompressible and, corresponding with its 

electrical properties, uniform. We then consider that the velocity ( v ~ ,  v,) and 
pressure p in the body of the fluid satisfy the Stokes equations for quasi-steady 
viscous flow in the horizontal xy-plane, with no external force: 

Together with these we take the equation of continuity, 

Through ( la) ,  we introduce the stream function $, such that 

a$ 
aY ’ ax 

v, z= -- a$ v,=--, 
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and which, according to (13), satisfies the biharmonic equation, 
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In  viscous flow at fixed solid surfaces the boundary conditions on the 

(17) 
velocity are 

the suffixes denoting normal and tangential components, respectively. Con- 
sider the outer boundary in our problem. It consists mainly of the four vertical 
walls of the tank, separated by small gaps. We assume that the gaps are solid and 
rounded, so that the boundary is a continuous smooth curve. Under these con- 
ditions, the first of equations (17) leads through (15) to the fact that $ has a 
constant value, ro say, at the boundary. Then, since the walls of the tank are 
parallel to the x- or y-direction, i t  follows by the further use of (15) that equa- 
tions (1 7) are, at the walls, replaced by the conditions on the stream function, 

0, = 0, v, = 0, 

@?/ax = 0 (wall in y-direction), 

a$/ay = 0 (wall in x-direction. 

Under electrostatic conditions there is no appreciable electrosmosis at this 
boundary. The walls are conductors, so that the electric intensity is normal and 
E, in Smoluchowski’s formula (8) is zero, and we assume that the effects of the 
insulating corners are negligible in this respect. Although the argument applies 
to the electrostatic situation, it holds to a good enough approximation in the 
steady-current case if, as we stipulate, the walls are much better conductors than 
the fluid and cylinder. This is physically realistic, for usually the walls would be 
made of metal, and metals have conductivities of a higher order than most fluids. 

Conditions (17) apply also at  the elliptic boundary, but electrosmosis occurs 
there, whence there is an abrupt change of tangential velocity on going into the 
fluid. Thus v, when it means the precise tangential velocity, is given by (17), but 
when it means the tangential velocity a t  the fluid side of the thin double layer, 
i t  is given by (8). Our procedure will be to take vt as given by (8) as a boundary 
condition; we thus obtain an account of the fluid motion which is inaccurate to 
the extent that our value of v, does not occur exactly a t  the elliptic boundary and 
incomplete in that there is no description of the motion in the region occupied 
by the double layer. Under the assumption of a very thin double layer, we 
regard this deficiency as unimportant. Our boundary conditions for the ellipse 

(19) 
are now 

where Q and X ,  introduced for convenience in the numerical work, are given by 

V ,  = 0, vt = Q X ,  

Q = CKE, sin y/4n,u, X = E,/Eo sin y. (20) 

With the use of (15), these conditions are shown to be equivalent to the conditions 
on the stream function, 

(21) 
$ = ri, -3cosa+-s ina  a$ = QX,  

ay ax 
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where Fi is a new constant and a is the angle the tangent to the ellipse makes 
with the x-direction, measured anticlockwise, the direction of the tangent being 
that of the arc-length s increasing. 

We assume that under the boundary conditions (17) and (19), the biharmonic 
equation (16) has a solution which is unique except for an additive constant. It 
follows that the solution is determined completely if we give an arbitrary value 
to one of the constants ro and ri (the other being then fixed automatically). 
We shall take 

Suppose that we reverse the direction of the applied field E,, and require that 
the new stream function satisfy (18) as restricted by (22). It follows from the 
electrical problem, equations (8) and (19), and the considerations of uniqueness, 
that the new @ is minus the old one. Thus ri is changed to - ri. Let us now 
rotate the whole system through 180" in the xy-plane, the co-ordinate axes 
remaining fixed. Then @ is unchanged, being a pseudo-scalar, and we see that 
the system has become as it was originally, before the field was reversed. In  this 
new manifestation of the original system, @ is zero at the outer boundary, as 
before, but is equal to - ri instead of Pi at the inner boundary. It follows from 
uniqueness that 

4. The numerical method: calculation of the stream function 
The square boundary of the system is chosen to be of side 40cm. For the 

ellipse with major and minor axes 2a and 2b, respectively, eccentricity e and 
distance between the foci, 2c, we take 

so that e = 0.866, 2c = 17-22cm, coshh = 1.1547, sinhh = 0.5773. (25) 
Four values of y less than 360" (all of course equivalent) will make the major 
axis of the elliptic section inclined at 45" to the direction of E,, and we take 
y = 135", giving the configuration shown in figure 1. 

We determine the stream function @ at discrete values of x and y forming 
a grid of square mesh in the xy-plane, in the region between the two boundaries. 
The x- and y-co-ordinates of any point are given by 

where j and k are integers, h is the mesh-length and (xo,yo) is an arbitrary 
starting-point. For simplicity the point in equation (26) is referred to as (j, k) 
and functions at the point by corresponding suffixes. 

The finite-difference approximation to the biharmonic equation, in accord- 
ance with the derivation and notation given by Allen (1954), is 

ro = 0. (22) 

ri = 0. (23) 

2a = 19.88 em, 2b = 9.94 em,? (24) 

(2, y) = (x, +jh, yo + kh), (26) 

1 - 

h 4 0  
(27) 

~ 

0 0 1 0 0  
0 2 - 8  2 0 
1 -8 20 - 8  1 @ j ; . , k = O ,  

2 - 8  2 0 
0 0 1 0 0  
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the centre number referring to the point (j, k). The numbers also indicate changes 
in the residuals at the corresponding points for unit change in the value of the 
function at (j, k). 

We have to suitably adapt the boundary conditions to the finite-difference 
method. Taking the outer boundary and, say, the left-hand wall of the tank in 
the y-direction (figure l), let us for the sake of argument call a point on this part 
of the boundary, (j- 1, Ic). Then from (18), (22) and an approximation for the 
derivative of a function with respect to x, we find that $j;.-l,k = $j,k = 0. In  
this way, we see immediately that $ is zero all along the two outermost layers 
of mesh-points. 

As regards the inner boundary, we have, solving (21) for the derivatives of $ 

ag w 
8X a Y  

and using (23), 
$ = 0, - = QXsina, - = -QXcosa. 

We need to determine the values of the function at points such as (j - 1, k) 
and (j - 2, k) in figure 2, termed the selvage and fictitious points. The method is 
almost the same as that given by Allen (1945). We expand $ into a Taylor series 
in the neighbourhood of the points of intersection and eliminate terms involving 
derivatives higher than first-order. Applying the boundary conditions (28), we 

obtain hd d2 
$jFl,k = + --QXsina+---- (h + 4 2  $i, ki  

- h+d  

$ -  - -  2h(h-d)QXsina+ (m) h-d $j,k, 

h+d  j , 2 ,k  - + 

FIGTJRE 2. Intersection of a mesh-line with the ellipse. 

where the minus and plus signs in the suffixes on the left refer, respectively, to 
points in the fluid on the right and on the left of the ellipse as shown in figure 1 
(only the right side being illustrated in figure 2). Similarly, where a mesh-line 
parallel to the y-direction intersects the ellipse, 

the plus and minus signs in the suffixes on the left referring, respectively, to 
points in the fluid on the lower and upper sides of the ellipse (figure 1). In  each 
case (j, k) is the second point out from the elliptic boundary and d is the distance 
between the point of intersection and the selvage point. 
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Taking E = 1 in the first place, a mesh was chosen with h = 4cm. The value 
of Q was taken to be 1, for the results depend linearly upon Q and we can there- 
fore multiply our final results by the actual value of this quantity. A t  each 
point of intersection of the ellipse and a mesh-line, the value of X was calculated, 
and the results were tabulated. Values of d and a were measured from an accurate 
drawing and, assigning arbitrary values to the $j ,k  in equations (29) and (30), 

= 1. 

the values of the function at the selvage and fictitious points were calculated. 
To avoid the use of decimals, the $-values were multiplied by 100. Arbitrary 
values of lOO$ were guessed for the other mesh-points except the two outermost 
layers, the residuals were calculated and the relaxation process carried out. 
When the residuals were effectively zero, the work was repeated on a finer mesh 
for which h = 2cm; finally, it  was done on the finer mesh for values of lOOO$ 
until the residuals were reduced to the least possible values. There was seen to 
be antisymmetry about any line through the centre of the ellipse; the final 
function values are given by Rowe (1962) and we do not quote them in detail, 
but the plot enabled streamlines to be drawn which are shown in figure 3. The 
whole process was repeated for E = 3,5. Again the detailed results are given by 
Rowe (1962). 



7 32 R. Cade and Althea Rowe 

5. Calculation of the hydrodynamical stresses and the force 
The components of the hydrodynamical stress tensor acting in a region of 

uniform, viscous, incompressible fluid are given in terms of the stream function by 

Using the $-values determined from the relaxation method, the values of 
az$/axZ and a$2/ayz were calculated from the finite-difference approximations 
(Allen 1954) at points such as (j, k )  and (j - 1, k )  in figure 2, and by linear extra- 
polation, the values at the points of intersection were found. 

A special technique is used to find the finite-difference approximations for 
P$/axay, and is described in detail by Rowe (1962).? In  considering points of 
intersection of mesh-lines in the x-direction and the ellipse, the essence of the 
method is the determination of a$/ay at  the points (j, k )  and (j- 1, k )  (the 
$-value at a fictitious point being used in the case of (j- 1, k ) )  from the finite- 
difference approximation (Allen 1954) (see figure 2). From the boundary 
conditions (28), the value of a$/ay is known a t  C in figure 2. Using the values of 
a$/ay at the above-mentioned points, the values of az$/axay at (j - $, k )  (the 
notation is self-explanatory), and at a point half-way between C and (j - 1, k), 
can be found by finite-difference differentation in the x-direction. By linear 
extrapolation in this direction, the values of az+/ax8y at C and similar points 
were determined. For points of intersection on mesh-lines in the y-direction, the 
method is basically the same, but initially the values of a$/ax are calculated and 
extrapolation is in the y-direction. 

From equations (13) and (15), we have 

Integrating with respect to arc-length on the ellipse, 

where p,, represents the pressure at an arbitrary point from which s is measured. 

(34) 
Since !!EL--+--, apax spay 

as axas ayas 

then, from (349, (33) and (32) we see that 

t It has been pointed out by a referee that we could instead have used a method such 
as was used for $ and led to equations (29) and (30). It might have been better on grounds 
of general consistency to have done so. 
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We shall take ,u = 1, for as with Q, the results depend linearly upon it and we 
can multiply by p at the end. 

The following method is used to find the finite-difference approximations to 
the values of a(Vz$)/ax and a(V2$)/ay, and is described fully by Rowe (1962). 
To find a(V2$)/8x at C say, in figure 2, we use the known values of a2$/ax2, 
aa$/ay2, and consequently V2$, at (j- 1, k), (j, k) (j + 1, k) to calculate a(V2$)/ax 
at (j  - 4, k) and (j + 4, k) in the usual way, and by linear extrapolation in the 
x-direction, we find a(V2$)/ax at C. For a point on a mesh-line in the y-direction 
and on the lower side of the ellipse, we use the fact that a2$/8x2 and a2$/ay2, and 
consequently V2$, at the points of intersection had been determined by linear 
extrapolation, so that [a(Vz$-)/ax],-, = [8(V2$)/i3x],-+, k. Using the values of 
V2$ at (j - 2, k - 1) and (j, k - 1) and the finite-difference procedure, we obtain 
a(V2$)/ax at (j- 1, k-  1). By linear extrapolation in the y-direction we obtain 
a(V2$)/ax at the point of intersection. Essentially the same method applies to 
the determination of this quantity at points on the upper side of the ellipse. In  
order to get the values of a(V2$)/ay, a reverse type of procedure holds; for 
instance in the case of C, we obtain [a(V2$)/ay]j-1,k and [a(V2$)/ay]j,k, and 
extrapolate in the x-direction. 

The arc-lengths Ss between the points of intersection were measured from the 
accurate drawing. Using these values, values of the appropriate derivatives 
of $, and the measured values of a, the trapezoidal rule was applied to find 
approximate values of the integral in (35), so that, remembering the remark 
follawing that equation, p -po was found at the points of intersection. 

The components of force per unit length on the cylinder are given by 

(36) 1 F, = 

F, = 

(Tzx sin a - Tx2/ cos a) ds, 

(TXy sin a - T,, cos a)  ds. 

!) 
I 

We calculate these quantities using the trapezoidal rule again, under the condi- 
tions already stated that Q = 1, ,u = 1, and taking po as zero, as we may since it 
does not contribute anything. Denoting Fx, F, for these values of Q and ,u by 
BX, Qu, respectively, the final results for a = 1 , s  and 5 are given in table 1. 
They are also recorded graphically in figure 4, and this graph gives functions 
@,(a), @Je) from which values for any a-value from 1 to 8 can be read. Then 
introducing Q and ,u, and substituting the value of Q from (20) (with y = 135"), 
we obtain 

a = l  a = 3  a = 5  

@ a  - 24.71 - 13.04 - 9.089 
@zl - 4.753 - 4.834 - 3.947 

TABLE 1 

By considering how quantities change under a linear magnification of the system, 
we find that these results hold for all geometrically similar systems. 
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An examination of the detailed numerical results shows easily without doing 
the calculation, that the cylinder experiences no couple due to the hydro- 
dynamical stresses, as can also be predicted from first principles. 

- 24.0 

- 184 

- 12.0 

- 6.0 

0 7 

L 

\ 

E 

FIGURE 4. The functions @ * ( E ) ,  QV(e) .  

6. Possible experimental application 
The above results could be used as the basis of an experimental method for 

determining electrokinetic potentials. The method would essentially be to 
determine the force on an elliptic cylinder under the conditions described and 
then calculate 5 by substitution in one or other of equations (37). This could be 
done by measuring the couple on two exactly similar cylinders hanging from a 
uniform beam, with equal lengths immersed in fluid in exactly similar tanks. 
The fields in the two systems could be both perpendicular or both parallel to the 
beam, and in order to produce a couple, they would have to be in opposite 
directions; in the former case we get a couple due to forces of the type Fz in (37), 
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and in the latter case, due to forces of the type Fv. The major axes of the elliptic 
cross-sections must, of course, be at 45' to the beam; they must also be at right 
angles to each other, for we bear in mind that there are purely electrical couples 
as given by (12), and with this arrangement, these couples cancel. The beam 
would be suspended from a torsion head, and the couple measured in the usual 
way by turning the torsion head to restore a rotation of the beam. 

If a length I of each cylinder is immersed, we cannot of coursetake the force 
on the cylinder as given in terms of (37) by lF, or lFv, because the system cannot 
be regarded as two-dimensional near the top and bottom, and (37) will not be 
valid there. However, the end-effects can be eliminated by doing two experi- 
ments with two different values of 1, I ,  and I ,  say. Under these conditions, (37) 
is applicable by giving the difference of the force on each cylinder as ]I2 - l,] F, or 

It is desirable on general grounds that one should determine both F, and Fv, 
but there is the special point in this context that the errors inherent in the 
numerical method enter in different ways in the calculation of ax(€) and QJe). 

The stress T,, is used to calculate F,, and Tvv to calculate Fv, and from formulae 
(31), it  can be seen that in one of the quantities T,, and Tvv, the errors in p and 
az$/8xay reinforce, and in the other they tend to cancel. 

I $2 - 4 I Fv. 

7. Discussion 
The quantitative correctness of our results will of course depend on the 

validity of Smoluchowski's formula. The usual derivation is rather crude, 
depending on the ' parallel-plate' concept of the double layer. Henry (1931) has 
shown that it is correct under certain assumptions concerning the double layer 
and for certain simple surfaces, with no restriction on the double-layer thickness. 
Cade (1954) has shown that under simple assumptions concerning the double- 
layer structure, it is true for any smooth surface provided the double layer is 
thin. However, even if the formula is not correct, it  seems very likely that the 
relationship between v, and E, will be one of proportionality, so that our results 
are probably correct except for a constant factor. 

It is remarkable that the general results (37) do not depend on viscosity, 
although the essence of the hydrodynamical method is the equation of motion 
of viscous flow. The stresses are effectively proportional to viscosity, but the 
electrosmotic velocity is inversely proportional, and the effects cancel. 

The theory assumes that it is correct to superpose linearly the hydrodynamical 
stresses upon the electrical stresses given according to classical electrostatics. 
Brown (1951) worked out the general theory of the stress system in a static fluid 
influenced by an electrostatic field, but apart from the work of Cade (1954), con- 
cerning boundary effects, nothing comparable seems to have been done for a 
moving viscous fluid. However, precisely the same assumption was made by 
Henry (1931), and probably by all workers in the subject. 

The ellipse is chosen to be of small eccentricity. This is done since there 
would be a large curvature a t  the ends otherwise, and the kpproximations would 
be unreliable there. This is the more serious because it is likely that with large 
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curvature there would be large stresses, as in the situation leading to the Cisotti 
paradox (see Birkhoff 1955), so that the largest errors would occur in the most 
important contributions to the final result. 

This paper is based upon a thesis by A. R., of the same title, accepted by the 
University of London in partial fulfilment of the requirements for the M.Sc. 
degree. 
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